Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: covidwho-2196020

ABSTRACT

In patients with severe #COVID19, increased levels of autoantibodies against PAR1 were found. These might serve as allosteric agonists of PAR1 on endothelial cells and platelets, and thus might contribute to the pathogenesis of microthrombosis in COVID-19. https://bit.ly/3pqM9Vv.

3.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-2073889

ABSTRACT

Immune perturbation is a hallmark of Coronavirus Disease 2019 (COVID-19) with ambiguous roles of various immune cell compartments. Plasma cells, responsible for antibody production, have a two-pronged response while mounting an immune defence with 1) physiological immune response producing neutralizing antibodies against protein structures of SARS-CoV-2 and 2) potentially deleterious autoantibody generation. Growing evidence hints towards broad activation of plasma cells and the presence of pathologic autoantibodies (abs) that mediate immune perturbation in acute COVID-19 [1]. Recently, a systematic screening for abs confirmed induction of diverse functional abs in SARS-CoV-2 infection, targeting several immunomodulatory proteins, including cytokines/chemokines and their respective G-protein coupled receptors (GPCR) [1]. Abs against GPCR act as agonistic and allosteric receptor modulators and are linked to chronic inflammatory diseases [2] and, as we recently demonstrated, disease severity in acute COVID-19 [3].

4.
Biomedicines ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2071216

ABSTRACT

Although there is strong evidence that SARS-CoV-2 infection is associated with adverse outcomes in certain ethnic groups, the association of disease severity and risk factors such as comorbidities and biomarkers with racial disparities remains undefined. This retrospective study between March 2020 and February 2021 explores COVID-19 risk factors as predictors for patients' disease progression through country comparison. Disease severity predictors in Germany and Japan were cardiovascular-associated comorbidities, dementia, and age. We adjusted age, sex, body mass index, and history of cardiovascular disease comorbidity in the country cohorts using a propensity score matching (PSM) technique to reduce the influence of differences in sample size and the surprisingly young, lean Japanese cohort. Analysis of the 170 PSM pairs confirmed that 65.29% of German and 85.29% of Japanese patients were in the uncomplicated phase. More German than Japanese patients were admitted in the complicated and critical phase. Ethnic differences were identified in patients without cardiovascular comorbidities. Japanese patients in the uncomplicated phase presented a suppressed inflammatory response and coagulopathy with hypocoagulation. In contrast, German patients exhibited a hyperactive inflammatory response and coagulopathy with hypercoagulation. These differences were less pronounced in patients in the complicated phase or with cardiovascular diseases. Coagulation/fibrinolysis-associated biomarkers rather than inflammatory-related biomarkers predicted disease severity in patients with cardiovascular comorbidities: platelet counts were associated with severe illness in German patients. In contrast, high D-dimer and fibrinogen levels predicted disease severity in Japanese patients. Our comparative study indicates that ethnicity influences COVID-19-associated biomarker expression linked to the inflammatory and coagulation (thrombo-inflammatory) response. Future studies will be necessary to determine whether these differences contributed to the less severe disease progression observed in Japanese COVID-19 patients compared with those in Germany.

5.
Respir Res ; 23(1): 239, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2021290

ABSTRACT

INTRODUCTION: Despite improvements in medical science and public health, mortality of community-acquired pneumonia (CAP) has barely changed throughout the last 15 years. The current SARS-CoV-2 pandemic has once again highlighted the central importance of acute respiratory infections to human health. The "network of excellence on Community Acquired Pneumonia" (CAPNETZ) hosts the most comprehensive CAP database worldwide including more than 12,000 patients. CAPNETZ connects physicians, microbiologists, virologists, epidemiologists, and computer scientists throughout Europe. Our aim was to summarize the current situation in CAP research and identify the most pressing unmet needs in CAP research. METHODS: To identify areas of future CAP research, CAPNETZ followed a multiple-step procedure. First, research members of CAPNETZ were individually asked to identify unmet needs. Second, the top 100 experts in the field of CAP research were asked for their insights about the unmet needs in CAP (Delphi approach). Third, internal and external experts discussed unmet needs in CAP at a scientific retreat. RESULTS: Eleven topics for future CAP research were identified: detection of causative pathogens, next generation sequencing for antimicrobial treatment guidance, imaging diagnostics, biomarkers, risk stratification, antiviral and antibiotic treatment, adjunctive therapy, vaccines and prevention, systemic and local immune response, comorbidities, and long-term cardio-vascular complications. CONCLUSION: Pneumonia is a complex disease where the interplay between pathogens, immune system and comorbidities not only impose an immediate risk of mortality but also affect the patients' risk of developing comorbidities as well as mortality for up to a decade after pneumonia has resolved. Our review of unmet needs in CAP research has shown that there are still major shortcomings in our knowledge of CAP.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Anti-Bacterial Agents/therapeutic use , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/therapy , Europe/epidemiology , Humans , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/therapy , SARS-CoV-2
6.
Pflugers Arch ; 474(10): 1069-1076, 2022 10.
Article in English | MEDLINE | ID: covidwho-1955965

ABSTRACT

Proinflammatory cytokines target vascular endothelial cells during COVID-19 infections. In particular, the endothelial glycocalyx (eGC), a proteoglycan-rich layer on top of endothelial cells, was identified as a vulnerable, vasoprotective structure during infections. Thus, eGC damage can be seen as a hallmark in the development of endothelial dysfunction and inflammatory processes. Using sera derived from patients suffering from COVID-19, we could demonstrate that the eGC became progressively worse in relation to disease severity (mild vs severe course) and in correlation to IL-6 levels. This could be prevented by administering low doses of spironolactone, a well-known and highly specific aldosterone receptor antagonist. Our results confirm that SARS-CoV-2 infections cause eGC damage and endothelial dysfunction and we outline the underlying mechanisms and suggest potential therapeutic options.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Glycocalyx , Mineralocorticoid Receptor Antagonists , SARS-CoV-2 , Spironolactone , COVID-19/blood , COVID-19/pathology , Cytokines/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Glycocalyx/drug effects , Glycocalyx/pathology , Humans , Interleukin-6/blood , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Proteoglycans/analysis , Proteoglycans/blood , Spironolactone/pharmacology , Spironolactone/therapeutic use
7.
BMC Public Health ; 22(1): 1305, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1923540

ABSTRACT

BACKGROUND: Considering the insufficiently controlled spread of new SARS-CoV-2 variants, partially low vaccination rates, and increased risk of a post-COVID syndrome, well-functioning, targeted intervention measures at local and national levels are urgently needed to contain the SARS-CoV-2 pandemic. Surveillance concepts (cross-sectional, cohorts, clusters) need to be carefully selected to monitor and assess incidence and prevalence at the population level. A critical methodological gap for identifying specific risks/dynamics for SARS-Cov-2 transmission and post-COVID-19-syndrome includes repetitive testing for past or present infection of a defined cohort with simultaneous assessment of symptoms, behavior, risk, and protective factors, as well as quality of life. METHODS: The ELISA-Study is a longitudinal, prospective surveillance study with a cohort approach launched in Luebeck in April 2020. The first part comprised regular PCR testing, antibody measurements, and a recurrent App-based questionnaire for a population-based cohort of 3000 inhabitants of Luebeck. The follow-up study protocol includes self-testing for antibodies and PCR testing for a subset of the participants, focusing on studying immunity after vaccination and/or infection and post-COVID-19 symptoms. DISCUSSION: The ELISA cohort and our follow-up study protocol will enable us to study the effects of a sharp increase of SARS-CoV-2 infections on seroprevalence of Anti-SARS-CoV-2 antibodies, post-COVID-19-symptoms, and possible medical, occupational, and behavioral risk factors. We will be able to monitor the pandemic continuously and discover potential sequelae of an infection long-term. Further examinations can be readily set up on an ad-hoc basis in the future. Our study protocol can be adapted to other regions and settings and is transferable to other infectious diseases. TRIAL REGISTRATION: DRKS.de, German Clinical Trials Register (DRKS), Identifier: DRKS00023418 , Registered on 28 October 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Follow-Up Studies , Humans , Prospective Studies , Quality of Life , Seroepidemiologic Studies
8.
Sci Adv ; 8(15): eabm5016, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1794539

ABSTRACT

With newly rising coronavirus disease 2019 (COVID-19) cases, important data gaps remain on (i) long-term dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates in fixed cohorts (ii) identification of risk factors, and (iii) establishment of effective surveillance strategies. By polymerase chain reaction and antibody testing of 1% of the local population and >90,000 app-based datasets, the present study surveilled a catchment area of 300,000 inhabitants from March 2020 to February 2021. Cohort (56% female; mean age, 45.6 years) retention was 75 to 98%. Increased risk for seropositivity was detected in several high-exposure groups, especially nurses. Unreported infections dropped from 92 to 29% during the study. "Contact to COVID-19-affected" was the strongest risk factor, whereas public transportation, having children in school, or tourism did not affect infection rates. With the first SARS-CoV-2 cohort study, we provide a transferable model for effective surveillance, enabling monitoring of reinfection rates and increased preparedness for future pandemics.

9.
Vaccines (Basel) ; 10(5)2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1792355

ABSTRACT

Background: Due to findings on adverse reactions and clinical efficacy of different vaccinations against SARS-CoV-2, the administration of vaccination regimens containing both adenoviral vector vaccines and mRNA-based vaccines has become common. Data are still needed on the direct comparison of immunogenicity for these different regimens. Methods: We compared markers for immunogenicity (anti-S1 IgG/IgA, neutralizing antibodies, and T-cell response) with three different vaccination regimens (homologous ChAdOx1 nCoV-19 (n = 103), or mixture of ChAdOx1 nCoV-19 with mRNA-1273 (n = 116) or BNT162b2 (n = 105)) at two time points: the day of the second vaccination as a baseline and 14 days later. Results: All examined vaccination regimens elicited measurable immune responses that were significantly enhanced after the second dose. Homologous ChAdOx1 nCoV-19 was markedly inferior in immunogenicity to all other examined regimens after administration of the second dose. Between the heterologous regimens, mRNA-1273 as second dose induced greater antibody responses than BNT162b2, with no difference found for neutralizing antibodies and T-cell response. Discussion: While these findings allow no prediction about clinical protection, from an immunological point of view, vaccination against SARS-CoV-2 with an mRNA-based vaccine at one or both time points appears preferable to homologous vaccination with ChAdOx1 nCoV-19. Whether or not the demonstrated differences between the heterologous regimens are of clinical significance will be subject to further research.

10.
Clin Microbiol Infect ; 28(7): 1024.e1-1024.e6, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1783259

ABSTRACT

OBJECTIVES: To examine the state of B-cell immunity 6 months after the second vaccination against SARS-CoV-2 in comparison to the state observed 2 weeks after vaccination. METHODS: Sera of 439 participants, whose immune responses to two doses of an mRNA-based vaccine (BNT162b2 or mRNA-1273) were previously characterized, was examined for anti-S1 IgG and IgA, anti-NCP IgG and neutralizing antibodies (nAb), and antinuclear antibodies (ANA). RESULTS: Levels of all examined markers decreased significantly from 2 weeks to 6 months after second vaccination (anti-S1 IgG: 3744 ± 2571.4 vs. 253 ± 144 binding antibody units (BAU)/mL; anti-S1 IgA: 12 ± 0 vs. 1.98 ± 1.75 optical density (OD) ratio; nAb: 100% ± 0% vs. 82% ± 19.3%), the vast majority of participants retaining reactive levels of anti-S1 IgG (436/439) and anti-S1 IgA (334/439) at 6 months. Immune responses were stronger for mRNA-1273 compared with BNT162b2 (anti-S1 IgG: 429 ± 289 vs. 243 ± 143 BAU/mL; anti-S1 IgA: 5.38 ± 3.91 vs. 1.89 ± 1.53 OD ratio; nAb: 90.5% ± 12.6% vs. 81% ± 19.3%). There was no meaningful influence of sex and age on the examined markers. There was a strong correlation between anti-S1 IgG and the surrogate neutralization assay (rho = 0.91, p <0.0001), but not for for IgA and the surrogate neutralization assay (rho = 0.52, p <0.0001). There was a ceiling effect for the association between anti-S1 IgG titres and the inhibition of binding between S1 and ACE2. ANA prevalence was unchanged from 2 weeks to 6 months after the second vaccination (87/498 vs. 77/435), as were the median ANA titres (1:160 vs. 1:160). DISCUSSION: Although the clinical consequences of decreasing anti-SARS-CoV-2 antibody titres cannot be estimated with certainty, a lowered degree of clinical protection against SARS-CoV-2 is possible. Persistently stronger responses to mRNA-1273 suggest that it might confer greater protection than BNT162b2, even 6 months after the second vaccination. Neither examined vaccinations induced ANA within the examined time frame.


Subject(s)
BNT162 Vaccine , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccination
11.
Front Immunol ; 13: 811020, 2022.
Article in English | MEDLINE | ID: covidwho-1674341

ABSTRACT

BACKGROUND: Heterologous vaccinations against SARS-CoV-2 with ChAdOx1 nCoV-19 and a second dose of an mRNA-based vaccine have been shown to be more immunogenic than homologous ChAdOx1 nCoV-19. In the current study, we examined the kinetics of the antibody response to the second dose of three different vaccination regimens (homologous ChAdOx1 nCoV-19 vs. ChAdOx1 nCoV-19 + BNT162b2 or mRNA-1273) against SARS-CoV-2 in a longitudinal manner; whether there are differences in latency or amplitude of the early response and which markers are most suitable to detect these responses. METHODS: We performed assays for anti-S1 IgG and IgA, anti-NCP IgG and a surrogate neutralization assay on serum samples collected from 57 participants on the day of the second vaccination as well as the following seven days. RESULTS: All examined vaccination regimens induced detectable antibody responses within the examined time frame. Both heterologous regimens induced responses earlier and with a higher amplitude than homologous ChAdOx1 nCoV-19. Between the heterologous regimens, amplitudes were somewhat higher for ChAdOx1 nCoV-19 + mRNA-1273. There was no difference in latency between the IgG and IgA responses. Increases in the surrogate neutralization assay were the first changes to be detectable for all regimens and the only significant change seen for homologous ChAdOx1 nCoV-19. DISCUSSION: Both examined heterologous vaccination regimens are superior in immunogenicity, including the latency of the response, to homologous ChAdOx1 nCoV-19. While the IgA response has a shorter latency than the IgG response after the first dose, no such difference was found after the second dose, implying that both responses are driven by separate plasma cell populations. Early and steep increases in surrogate neutralization levels suggest that this might be a more sensitive marker for antibody responses after vaccination against SARS-CoV-2 than absolute levels of anti-S1 IgG.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , ChAdOx1 nCoV-19/immunology , Immunization, Secondary/methods , SARS-CoV-2/immunology , Adult , Age Factors , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Young Adult
12.
Infection ; 49(6): 1299-1306, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1482322

ABSTRACT

PURPOSE: Thorough knowledge of the nature and frequency of co-infections is essential to optimize treatment strategies and risk assessment in cases of coronavirus disease 2019 (COVID-19). This study aimed to evaluate the multiplex polymerase chain reaction (PCR) screening approach for community-acquired bacterial pathogens (CABPs) at hospital admission, which could facilitate identification of bacterial co-infections in hospitalized COVID-19 patients. METHODS: Clinical data and biomaterials from 200 hospitalized COVID-19 patients from the observational cohort of the Competence Network for community-acquired pneumonia (CAPNETZ) prospectively recruited between March 17, 2020, and March 12, 2021 in 12 centers in Germany and Switzerland, were included in this study. Nasopharyngeal swab samples were analyzed on hospital admission using multiplex real-time reverse transcription (RT)-PCR for a broad range of CABPs. RESULTS: In total of 200 patients Staphylococcus aureus (27.0%), Haemophilus influenzae (13.5%), Streptococcus pneumoniae (5.5%), Moraxella catarrhalis (2.5%), and Legionella pneumophila (1.5%) were the most frequently detected bacterial pathogens. PCR detection of bacterial pathogens correlated with purulent sputum, and showed no correlation with ICU admission, mortality, and inflammation markers. Although patients who received antimicrobial treatment were more often admitted to the ICU and had a higher mortality rate, PCR pathogen detection was not significantly related to antimicrobial treatment. CONCLUSION: General CABP screening using multiplex PCR with nasopharyngeal swabs may not facilitate prediction or identification of bacterial co-infections in the early phase of COVID-19-related hospitalization. Most patients with positive PCR results appear to be colonized rather than infected at that time, questioning the value of routine antibiotic treatment on admission in COVID-19 patients.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Legionella pneumophila , Pneumonia , Cohort Studies , Coinfection/diagnosis , Coinfection/epidemiology , Community-Acquired Infections/diagnosis , Humans , Multiplex Polymerase Chain Reaction , Prospective Studies , SARS-CoV-2
13.
United European Gastroenterol J ; 9(9): 1081-1090, 2021 11.
Article in English | MEDLINE | ID: covidwho-1469560

ABSTRACT

BACKGROUND: Corona virus disease 2019 (COVID-19) patients are at increased risk for thromboembolic events. It is unclear whether the risk for gastrointestinal (GI) bleeding is also increased. METHODS: We considered 4128 COVID-19 patients enrolled in the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. The association between occurrence of GI bleeding and comorbidities as well as medication were examined. In addition, 1216 patients from COKA registry were analyzed focusing on endoscopy diagnostic findings. RESULTS: A cumulative number of 97 patients (1.8%) with GI bleeding were identified in the LEOSS registry and COKA registry. Of 4128 patients from the LEOSS registry, 66 patients (1.6%) had a GI bleeding. The rate of GI bleeding in patients with intensive care unit (ICU) admission was 4.5%. The use of therapeutic dose of anticoagulants showed a significant association with the increased incidence of bleeding in the critical phase of disease. The Charlson comorbidity index and the COVID-19 severity index were significantly higher in the group of patients with GI bleeding than in the group of patients without GI bleeding (5.83 (SD = 2.93) vs. 3.66 (SD = 3.06), p < 0.01 and 3.26 (SD = 1.69) vs. 2.33 (SD = 1.53), p < 0.01, respectively). In the COKA registry 31 patients (2.5%) developed a GI bleeding. Of these, the source of bleeding was identified in upper GI tract in 21 patients (67.7%) with ulcer as the most frequent bleeding source (25.8%, n = 8) followed by gastroesophageal reflux (16.1%, n = 5). In three patients (9.7%) GI bleeding source was located in lower GI tract caused mainly by diverticular bleeding (6.5%, n = 2). In seven patients (22.6%) the bleeding localization remained unknown. CONCLUSION: Consistent with previous research, comorbidities and disease severity correlate with the incidence of GI bleeding. Also, therapeutic anticoagulation seems to be associated with a higher risk of GI bleeding. Overall, the risk of GI bleeding seems not to be increased in COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Endoscopy, Gastrointestinal , Gastrointestinal Hemorrhage/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Anticoagulants/adverse effects , Child , Child, Preschool , Comorbidity , Critical Illness , Diverticular Diseases/diagnosis , Europe/epidemiology , Female , Gastroesophageal Reflux/complications , Gastrointestinal Hemorrhage/etiology , Hospitalization , Humans , Infant , Intensive Care Units , Male , Middle Aged , Peptic Ulcer/diagnosis , Registries , Severity of Illness Index , Young Adult
14.
Infection ; 50(2): 423-436, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1460516

ABSTRACT

PURPOSE: Reported antibiotic use in coronavirus disease 2019 (COVID-19) is far higher than the actual rate of reported bacterial co- and superinfection. A better understanding of antibiotic therapy in COVID-19 is necessary. METHODS: 6457 SARS-CoV-2-infected cases, documented from March 18, 2020, until February 16, 2021, in the LEOSS cohort were analyzed. As primary endpoint, the correlation between any antibiotic treatment and all-cause mortality/progression to the next more advanced phase of disease was calculated for adult patients in the complicated phase of disease and procalcitonin (PCT) ≤ 0.5 ng/ml. The analysis took the confounders gender, age, and comorbidities into account. RESULTS: Three thousand, six hundred twenty-seven cases matched all inclusion criteria for analyses. For the primary endpoint, antibiotic treatment was not correlated with lower all-cause mortality or progression to the next more advanced (critical) phase (n = 996) (both p > 0.05). For the secondary endpoints, patients in the uncomplicated phase (n = 1195), regardless of PCT level, had no lower all-cause mortality and did not progress less to the next more advanced (complicated) phase when treated with antibiotics (p > 0.05). Patients in the complicated phase with PCT > 0.5 ng/ml and antibiotic treatment (n = 286) had a significantly increased all-cause mortality (p = 0.029) but no significantly different probability of progression to the critical phase (p > 0.05). CONCLUSION: In this cohort, antibiotics in SARS-CoV-2-infected patients were not associated with positive effects on all-cause mortality or disease progression. Additional studies are needed. Advice of local antibiotic stewardship- (ABS-) teams and local educational campaigns should be sought to improve rational antibiotic use in COVID-19 patients.


Subject(s)
Antimicrobial Stewardship , COVID-19 Drug Treatment , Adult , Anti-Bacterial Agents/therapeutic use , Disease Progression , Humans , SARS-CoV-2
15.
Clin Microbiol Infect ; 28(5): 701-709, 2022 May.
Article in English | MEDLINE | ID: covidwho-1415295

ABSTRACT

OBJECTIVES: To investigate the response of the immune system (and its influencing factors) to vaccination with BNT162b2 or mRNA-1273. METHODS: 531 vaccinees, recruited from healthcare professionals, donated samples before, in between, and after the administration of the two doses of the vaccine. T- and B-cell responses were examined via interferon-γ (IFN-γ) release assay, and antibodies against different epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (S1 and NCP) were detected via ELISA and surrogate neutralization assay. Results were correlated with influencing factors such as age, sex, prior infection, vaccine received (BNT162b2 or mRNA-1273), and immunosuppression. Furthermore, antinuclear antibodies (ANAs) were measured to screen for autoimmune responses following vaccination with an mRNA vaccine. RESULTS: No markers of immunity against SARS-CoV-2 were found before the first vaccination. Two weeks after it, specific responses against SARS-CoV-2 were already measurable (median ± median absolute deviation (MAD): anti-S1 IgG 195.5 ± 172.7 BAU/mL; IgA 6.7 ± 4.9 OD; surrogate neutralization 39 ± 23.7%), and were significantly increased two weeks after the second dose (anti-S1 IgG 3744 ± 2571.4 BAU/mL; IgA 12 ± 0 OD; surrogate neutralization 100 ± 0%, IFN-γ 1897.2 ± 886.7 mIU/mL). Responses were stronger for younger participants (this difference decreasing after the second dose). Further influences were previous infection with SARS-CoV-2 (causing significantly stronger responses after the first dose compared to unexposed individuals (p ≤ 0.0001)) and the vaccine received (significantly stronger reactions for recipients of mRNA-1273 after both doses, p < 0.05-0.0001). Some forms of immunosuppression significantly impeded the immune response to the vaccination (with no observable immune response in three immunosuppressed participants). There was no significant induction of ANAs by the vaccination (no change in qualitative ANA results (p 0.2592) nor ANA titres (p 0.08) from pre-to post-vaccination. CONCLUSIONS: Both vaccines elicit strong and specific immune responses against SARS-CoV-2 which become detectable one week (T-cell response) or two weeks (B-cell response) after the first dose.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G , Vaccination , Vaccines, Synthetic , mRNA Vaccines
16.
Neonatology ; 118(6): 734-735, 2021.
Article in English | MEDLINE | ID: covidwho-1403142
17.
Emerg Microbes Infect ; 10(1): 1515-1518, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1313723

ABSTRACT

We show a shift in the prevalence of respiratory viral pathogens in community-acquired pneumonia patients during the COVID-19 pandemic. Our data support the efficiency of non-pharmaceutical interventions on virus circulation except for rhinoviruses. The consequences of an altered circulation on subsequent winter seasons remain unclear and support the importance of systematic virological surveillance.


Subject(s)
COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/virology , Community-Acquired Infections/microbiology , Community-Acquired Infections/virology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia/microbiology , Pneumonia/virology , Prevalence , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Young Adult
19.
J Pediatric Infect Dis Soc ; 9(5): 620-621, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-919278

ABSTRACT

The reason for the apparently lower infection rate of children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared to adults is still unclear. Here, we report on 4 schoolchildren with heavy exposure to SARS-CoV-2 with no clinical signs of coronavirus disease 2019, repeated negative nasopharyngeal swabs for SARS-CoV-2 RNA, and no seroconversion.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Family Health , Pneumonia, Viral/transmission , Betacoronavirus/isolation & purification , COVID-19 , Child , Disease Transmission, Infectious , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
20.
Infection ; 48(6): 971-974, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-631448

ABSTRACT

PURPOSE: The first SARS-CoV-2 cases in Europe were reported in January 2020. Recently, concern arose on unrecognized infections before this date. For a better understanding of the pandemic, we retrospectively analyzed patient samples for SARS-CoV-2 from the prospective CAPNETZ study cohort. METHODS: We used nasopharyngeal swab samples from a cohort of well characterized patients with community acquired pneumonia of the CAPNETZ study group, recruited from different geographic regions across Germany, Austria, the Netherlands, and Switzerland between 02nd December 2019 and 28th April 2020. Multiplex real-time RT-PCR for a broad range of respiratory pathogens and SARS-CoV-2 real-time RT-PCR were performed on all samples. RESULTS: In our cohort, respiratory pathogens other than SARS-CoV-2 were detected in 21.5% (42/195) of patients with rhinovirus as the most frequently detected pathogen. The detection rate increased to 29.7% (58/195) when SARS-CoV-2 was included. No SARS-CoV-2 positive sample was detected before end of March 2020. CONCLUSIONS: Respiratory viral pathogens accounted for a considerable number of positive results but no SARS-CoV-2 case was identified before the end of March 2020.


Subject(s)
COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , Cohort Studies , Community-Acquired Infections/diagnosis , Community-Acquired Infections/etiology , Community-Acquired Infections/history , Female , Germany , History, 21st Century , Humans , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Pneumonia/diagnosis , Pneumonia/etiology , Pneumonia/history , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL